Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex.

نویسندگان

  • Joakim Vinberg
  • Kalanit Grill-Spector
چکیده

The lateral occipital complex (LOC) responds preferentially to objects compared with random stimuli or textures independent of the visual cue. However, it is unknown whether the LOC (or other cortical regions) are involved in the processing of edges or global surfaces without shape information. Here, we examined processing of 1) global shape, 2) disconnected edges without a global shape, and 3) global surfaces without edges versus random stimuli across motion and stereo cues. The LOC responded more strongly to global shapes than to edges, surfaces, or random stimuli, for both motion and stereo cues. However, its responses to local edges or global surfaces were not different from random stimuli. This suggests that the LOC processes shapes, not edges or surfaces. LOC also responded more strongly to objects than to holes with the same shape, suggesting sensitivity to border ownership. V7 responded more strongly to edges than to surfaces or random stimuli for both motion and stereo cues, whereas V3a and V4 preferred motion edges. Finally, a region in the caudal intraparietal sulcus (cIPS) responded more strongly to both stereo versus motion and to stereo surfaces versus random stereo (but not to motion surfaces vs. random motion). Thus we found evidence for cue-specific responses to surfaces in the cIPS, both cue-specific and cue-independent responses to edges in intermediate visual areas, and shape-selective responses across multiple cues in the LOC. Overall, these data suggest that integration of visual information across multiple cues is mainly achieved at the level of shape and underscore LOC's role in shape computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

The Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning

In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...

متن کامل

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2008